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EVALUATION

The necessity for nore conplex software systems in such areas as
conmand and control and avionics has led to the desire for better
wethods for predicting software errors to insure that software !
produced is of higher quality and of lower cost. This desire has been !
expressed in numerous industry and GCovernment sponsored conferences, |
as well as  in documents such as the Joint Commanders’ Software !
Reliability Working Group Report (Nov 1975). As a result, numerous ;

!

{

efforts have been {nitiated to develop methods for determining the
optimal policy for maintenance of an operational software systen.
Hovever, ecarly efforts have not developed any consistent or generally
applicable software maintenance policy.

This eftort was initiated in response to this need for developing
better and more accurate software error prediction models and fits
into the goals of PADC TPO No. S, Software C(Cost Reduction (formerly f
FADC  TPO  Yo. 11, Software Sciences Technolopy), in the subthrust of

Software Ouality (Software Modelinpg). This report summarizes the

developnent  of  a  Pavesian methodology for determining the optimal

policy for maintaininpg an operational software system., The importance

of this development is that it represents the first attempt to develop

operational software maintenance policies that wmore closely reflect

the actual software error detection and correction process.

The theory and equations developed under this effort will lead to much
needed  predictive ncasures for use by softwarc maintenance personnel
in providing better and more efficient waintenance of operational
software, In  addition, the associated confidence limits and other
related statistical quantities developed under this effort will insure
more  widespread use of these modeling techniques. Finally, the !
predictive neasures and equations developed under this effort will be
applicable to current Air Force software development projects and thus
help to produce the high quality, low cost software needed for today’s
systems,

o o L
((‘ (»1‘\. "\ -S‘ ¢ ‘)‘J)\:.;

ALAN No SUKERT
Project Fngineer |
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1. INTRODUCTION

In this report we discuss the problem of determining an
optimum correction limit policy for a large software system which
1s subject to random occurrences of errors. When an error occurs,
a corrective action is undertaken to remove it. Such an action

can be scheduled at two levels, which we call Phase 1 and Phase II.

By Phase I we mean that the corrective action will be undertaken
by the programmer while Phase II action is undertaken by a system
analyst or system designer. First, Phase I corrective action 1is
scheduled for a specified time T. If the error is not corrected
in this time, 1t 1s referred to Phase II. This sequence of cor-
rective actions in an operational phase is shown in Figure 1l.1.
Our objective is to determine the optimum value T of T which
minimizes the long run average cost. Two models are developed
for this purpose. In the first model (Section 2) we assume that
the cost cf observations of error occurrence and correction time,
prior to the implementation of the optimum policy, is negligible.

The second model (Section 3) incorporates the cost of observations.
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2. MODEL WHEN COST OF OBSERVATIONS IS NEGLIGIBLE

The following assumptions are made for model development:

(i) The error occurrence time in a software system has an
exponential distrib_.tion with an unknown mean 1 .

(ii) The error correction time at Phase I is exponential with

an unknown mean B

(iii) The Phase II error correction time has a general distri-

o AN T AP

bution with a known mean Wy

(iv) Appropriate prior distributions can ba chosen for 1\ and

Uhl .
2.2 Predictive Distributions of Y and X

Let random variables X and Y denote the error occurrence
time and Phase i erior correction time, respectively. From assump-

tions (i) and (ii) the probability density functions are

£(xI\) a{-é*/* x>0, A>0 (2.1)
-Y/le

Y a-—l— - O 2
g(ylul) “le y>0, “l’( (2.2)

o

In this report, we develop suitable expressions by consider-
ing the conjugate priors for b and A which are inverted gamma

distributions given by

BeE  ~lagell b/
. e 8. >0, 2.3
Emy L Pl M . oy r %y 23
% ana %
; as
 § 8 ~(a,+1) =B,/\
| - 2 2 2 . @ . (2.4)
1 I Flags e v
E
1 3 ]

i ——————————————




The expressions for any other reasonable priors for 5 and

A can be developed similarly.

Also, let 5=(x1,x2,...,xn) and b (yl,yz,...,yn) be the
observed valucs of n error occurrence times and n error correction
times, respectively.

Now we obtain expressions for the predictive distributions
of Y and X and also obtain the Bayesian estimates Yasa and Xl
which will be used to obtain the cost function.

For given observations Yy the likelihood function of b1 is

= T
Llu ly) = w] e : (2.5%)

The posterior distribution of by is obtained from Bayes

theorem:

) ““1'!’?(“1)
P(u,ly) = - 2.6)
V27 ey tp)p ey :

Substituting the expressions for p(u,)and 2(wly) from (2.3) and
1 = -

(2.5), we get the posterior distribution of Wy as

8,+ © e .

+ < o

Plu,ly) = il i = (o;+n+1) (8, + '21 Yi)/wy) (2.7)
: ul z . & “1 e -

! | I'(al+n)

Using this posterior, the predictive distribution g(ylz) of

error correction time at Phase I is given by

| @

glyly) = J'O glylu))P(ny(yldu, -

(2.8)




2

Substituting the expressions for g(ylul) and p(gﬂy) from (2.2)

and (2.6), respectively, we get

n+a, gl )
syly) = (——)(1+ 5——) : (2.9)
z .+ B z . +
i e G S s

The cumulative predictive distribution to some specified time t is

t
G(tly) = J'o g(yly)dy

‘(n+al)
t
° 1--(-————lrl ) L (2.10)
I y.+8
Sl i 1

We define the predictive Phase I error correction rate as

g(tly)
Fiel g} = =i (2.11)
G(tlx)
so that
n+ o ~1
fep = () (1)
L y.+8 T y.+8
jmi 1 j=1 1 1

where G(t)=1l-G(t) .
The predictive distribution £(x|x) of the error occurrence

time can be similarly obtained.

2.2 Bayesian estimates Xnel and Yoel®

From the predictive distributions of X and Y the Bayesian
estimates in+1 of the time to (r+l)st error occurrence, for
given x and the (n+l)st error correction time for given y are

easily obtained, since




9“'0'1 - Io E(tlz)dt |

n
L y,+8
ing 2 3
= —~—————-—I— (2.13)
al+n—
Similarly
3
i .
Xe1 = [ Flelx)ae . (2.14)
0 ,
1
where
t
F(tlx) = [ f£(xIx)dx (2.15)
0

which is a cumulative predictive distribution to some specified

time t . Hence

n
s x
= i=]

it 8y
in+1 (2.16)

2.3 Cost Function

Let c¢ (c2) be the cost per unit time of error correction in

1
Phase I (Phase II) and the costs be linear functions of time. From é
assumption (iii) Phase II error correction time has some arbitrary

general distribution with a known mean oo If we consider one cycle

to be the time from the beginning of (n+l)st operation to the

beginning of (n+2)nd operation, then the expected cost in one cycle

is
T— 3 E
E(C) = clfoc(tlx)dt+c2uZG(Tlx) ' (2.17) }

where T denotes the scheduled correction limit time in Phase I.




The expected length of one cycle is

T — ——
B(L) = &, ., + jo G(tly)dt+u, G(Tly) . (2.18)

and hence the long run expected cost per unit time i«
E(C)

it S 23

or

T - —
e J‘Q G(tly)dt+c,u, G(Tly)
c(T) = = . (2.19)

§m1+fo G(tly)dt + ..,amx)

Thia is the cost function which we want to optimize to obtain the

optimum policy.

2.4 Optimum Policy

From (2.19), we note that

e,y n
c(0) = —2—2 (2.20)

ana

(o]
C(e) = ;__L_m.l.. (2.21)

where 9n+1 is the Bayesian estimate of y for given data y.

Algo, note that T=0 means that the errors are corrected only

at Phase II while T=« means that they are corre ted at Phase I.
To obtain an optimum T* which minimizes the long run average

coat per unit time, C (T) , we need the following theorems and

T TSI,



corollary. Theorems 2.1 and 2.2 are the special cases of the

theorems proved in Appendices A and B respectively.

Theorem 2.1

Assume ¢, <c, . Then under the following condition

S Hnyy *ua) ~ €3 4 (2.22)

r(0ly) > i
€2 %Xne1 P2

there exists a finite and unique T* which satisfies

T e
r(Tiy){e, &  ,+ (cy=c,) IO G(tly)dt)

c, X
a 1 n+l
+ (cz-cl)G(T|x) = __;_2.—_ ky (2‘23)

Theorem 2.2
If the above conditions are satisfied then there also exists
a finite and unique upper bound T(>T*) such that
% c, X
r(Tly) @= ———L 0¥l (2.24)

waleg X1+ (ep=e)) vy

This upper bound can be used to obtain an initial value for

solving the nonlinear equations in T* .

Corollary 2.1

If there exists an optimum T* , then the associated cost

function is given by

€1=Cy By r(T*ly)

C(T*) = TTIFW @ (2.25)

s i e a0 i g st



A o N IR 00 s e

2.5 Numerical Example

We use simulated data in this example to illustrate the cal-

culations and nature of various quantities in the determination

of T*.
Let
¢, = 8000 c, = 9000
ay = 0 B, = 0
a, =0 B, =0
By = 0.7

The simulated data (xn,yn) are given in Table 2.1. Suppose
n=10 data points are available. The Bayesian estimates of Xy, and
y,, are obtained from (2.16) and (2.13) as §c11=59.so and 9u=o.7a,
respectively. Such values for various n are given in Table 2.2.
For the case n=10 we see that the optimum correction limit time
is T*=0.90 hours and the corresponding minimuin cost rate is
C(T*) = 99.44 dollars/hour.

Thus, for this set of data, we will schedule corrective
action in Phase I for 0.90 hours and if it cannot be completed

in this time, the software system will be referred to the system

analyst for corrective action.

e




TABLE 2.1

Simulated values of X, and Yn
n X, (Hrs.) (Hrs.) n X, (Hrs.) yn(Hrl.)
1 61.34 1.90 11 53.44 1.03
2 27.84 1.08 12 2.87 0.95
3 154.30 0.85 13 31.27 0.60
4 14.58 0.26 14 97.06 0.02
5 10.86 0.01 15 78.17 1.49
6 35.35 0.31 16 124.52 0.52
7 140.13 0.38 17 0.49 0.36
8 36.47 1.50 18 12,33 0.08
9 8.74 0.43 19 85.44 3.51
10 46.79 0.27 20 23.59 0.10
10




TABLE 2.2

Calculation for the Optimum Correction Time Policy

® §n+1(hr.) Y5 (hE.) T (hr.) C(T*)
2 89.17 2.98 0 70.10
3 121.74 1.92 0 51.45
4 86.02 1.36 0 72.65
5 67.23 1.02 0 92.74
6 60.85 0.88 0.32 101.05
7 74.07 0.80 0.73 80.11
8 638.70 0.90 0.02 90.78
9 61.20 0.84 0.38 100.60
10 59.60 0.78 0.90 99. 44
11 58.98 0.80 0.66 102.87
12 53.88 0.82 0.50 113.82
13 52.00 0.80 0.68 116.85
14 55.46 0.74 1.45 103.80
15 57.09 0.79 0.75 106.51
16 61.58 0.77 1.02 97.47
17 57.76 0.75 1.45 101,22
18 55.09 0.71 2.16 101.14
19 56.78 0.86 ()} 109.61
20 55.03 0.82 0.13 112.97
11




2.6 Sensitivity Analysis of the Optimum Correction Time T¥* ,

To study the sensitivity of T* to changes in various para-
meters, we look at the plot of T* versus average correction time,
y=¢ yi/n. Plots for various values of c,, C,, a;, a,, B,

82, e By and W, are given in Figures 2.1 to 2.4. In Figure 2.1,
oy is varied while other parameters are kept constant. The effect
of changing <, while keeping other factors constant is shown in
Figure 2.2. Effects of changing uzand n are shown in Figures 2.2
and 2.4, respectively. The following observations can be made from
these figures.

(i) T* increases with a, for fixed y and the slope of T*

1

vs y lines is independent of @, (Figure 2.1)
(ii) T* increases with c, for fixed y and the slope of T*
vs y line is independent of c, (Figure 2.2)

(iii) T* increases with ,_ for fixed y and the slope of T¥

2
vs y line is independent of by (Figure 2.3)
(iv) T* increases with n for fixed ; but the rate of increase

decreases with y (Figure 2.4).

12
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3. MODEL FOR NONZERO COST OF OBSERVATIONS

In this section we develop the cost model for the optimum
correction limit policy by incorporating sampling cost. It is
assumed that the sampling cost i§ a linear function of the sample
size. -

Let c be the sampling cost*at each state and C,(T,) be the
expected cost per unit time un@ﬁl the completion of (n+l)st correc-
tive action under the limit ¢ime Tn‘ Having taken n observations,
if we decide to take another observation, i.e., the (n+l)st observa-

tion, then cn+1(T is the cost per unit time until the completion

n+1)

of the (n+2)nd corrective action under the limit time Tn+l'

3.1 cost Function

Let the length of the nth cycle be the time from the beginning
of nth operation to the end of nth corrective action. Then the

expected cost at the end of (n+l)st cycle, given n observations,

is
Tn
E(Cn)=nc'+c1fo G(tiyldt+cyu,G(T ly) - (3.1)
The expected time to the end of the (n+l)st cycle is
n - s Tn X o 3.2)
ElLp) = T xg+& o+ I yi+[ G(tlyldt+u,G(T ly) (3.
i=1 i=1 0
The expected cost per unit time at the end of (n+l)st cycle is
¢
then given by
17
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E(Cn)

Cn(Tn) . E(Ln$

or
To ¥
nc+c) [ G(tlyldt+cyu,G(T |y)
c (T ) = ¢
n''n n x n T = i
L X,+X + & y. .+ G(tly)dt + u, G(T ly)
Pl S0 8 X - R W

Tm- 1

: = 4
(m-.‘l.)c*c1 ‘o G(tlx)dt+c2 “ZG(Tml'X)

(3.3)

(3.4)

If we decide to consider the next cycle, then the cost rate

function to the end of (n+2)nd cycle is similarly obtained as

(o (T ) =
n+l el n n Tn+l

i=1 i=1

3.2 Optimum Policy

and the optimum correction limit T; such that

Cn(T:\) > le(T:wl) =

(i) cCalculate Cn('r;) and Cn+l(T:\+l)
and employ n* and T; as the optimum policy.
let n=n+l and go to step (i).

18

summarize the procedure of determining these qQuantities:

s s r g G
I x;+2x .+ E Yi+yn+l*~o G(tlyldt+ uy G(T,  ,!Y)

Our objective is to determine the optimum sample size n¥

(3.6)

Given that n observations have been taken, the following steps

e & " -
(ii) 1I1f Cn('l‘n) Scml(Tml) ., then stop taking observations

(iii) 1I1f cn('r;) >Cn+1(T;) , take (n+l)st observation, i.e.



The following theorems are used in determining cn('r:‘) and

l(Tn+1) Theorems 3.1 and 3.2 are the special cases of the

theorems in Appendices A and B, respectively.

Theorem 3.1
Suppose ¢, <c, and A20 . Then there exists a unique and
finite T; satisfying

T
n-—- ——
r(Tn|x)[A+ (cy=¢;) JO G(tly)dt) + (cz-cl)G(Tnlx) =B (3.7)

where

n

{ n
A =¢ L ox,+X vy - nc (3.8)
2 i=1 i nel? Sl i}

""[ 1{1_1 R T Elvi}'“] : =

Also, the associated cost rate function is given by

C) =S, by F(TR)

Co(Th) = “Tmy—EE - (3.10)

Theorem 3.2

If the conditions of Theorem 3.1 hold, then there exists a

finite upper bound Tn (>T*) such that

é (3.11)

- - -
r(Tyl¥) = 33 (cy= 1)yn+1

19
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Theorem J,J
If both Ta and Ta§1 exiat, then the following relation=-

ahip holda.

TR > (T,

(<) ne L
<ud Y(T®) > pr(Te ,.)
n (%) ne 1
- L 3 L )
<= mh > Tn+1 : (3.12)

(=)
Relationships given in Theorem 3,3 are explained in

Appendix C,

1.3 Numerical Example

In thir example we use zimulated data to illustrate the

determination of n* and TR . Simalated values of X and ¥

fOr various n are given in Table 3,1, Suppose the values of

various gquantitiesz are az follows:

> ;
cl = 82000 Cy . ® 2000 > a4
al""l‘ B‘sl
Q\ﬂﬁ 5"90
-
= 0.7

w2

Then the values of X, 1v Yo p0 The O (TR)e Ty and

¢ (T* .) are ebtained from the above expressions and are uiven
el el

in Table i 2, From this table we mee that for n=11,

Cll(T‘\) =21.74 and cl}(T‘J)”)““‘ g0 that C\‘(Tﬁll lv\)(wﬁ;).

Therefore, the optimum policy ir n* =11 and Ta-o.nﬂ.
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TABLE 3.1

Simulated values of X, and ¥

n xn(hr) yn(hr) n xn(hr) yn(hr)
1 32.25 1.69 10 3.72 0.1%
2 34.77 0.12 11 50.85 0.07
3 63.92 0.23 12 64.89 0.12
4 21.03 0.41 13 0.76 0.29
| 5 39.42 0.20 14 87.45 1.33
< 6 9.97 0.37 15 64.12 0.77
g 7 3.69 0.22 16 30.98 1.37
1 8 2.42 1.75 17 127.05 1.39
1 9 10.71 3.00 18 85.54 0.21
i
ﬁg
1t
i
i
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TABLE 3.2

Calculations for the Optimum Policy

b in+1 9n+1 T; Cn(T;) T;+l Cn*l(T;+1ﬂ
2 67.01 1.56 0 46.73 0 37.72
3 65.47 1.09 0 32.24 0 32.05
) 50.65 0.91 0.33 30.9 0.33 27.06
5 47.85 0.76 0.92 24.44 0.92 23.74
6 40.27 0.69 0.12 23.00 0.13 20.55
7 34.17 0.62 0.19 21.43 0.19 19.12
8 29.64 0.77 0.95 25.63 0.95 23.25
9 27.27 1.02 0 26.21 0 24.93
10 24.66 0.93 0 26.23 0 24.32
11 27.27 0.85 0.09 21.74 0. 09 23.63
22




4. CONCLUDING REMARKS

In this report we have presented two models for the determina-
tion of Bayesian software correction limit policies under the
assumption of exponential error occurrence times. For the first
model we assume that the sampling cost is negligible while for the
second model, such cost is incorporated. Procedures for determining
the optimum policy were described and illustrated via numerical

examples.
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APPENDIX A

TheoremA-1l. Let C¥*(T) be a cost function given by

T —
a+c, IO G(tly)dt+c, by G(T! y)
C*(T) - T (A-l)

b+ “Po G(tlyldt+u,G(Tly)

where a and Db are constants and let the following conditions

hold
€ <5 and A 20
where
A= czb-a.
Then there exists a finite and unique T* which satisfies
NT o -y

q(T) = r('rlx){ﬁu (cz-cl) UOG(tlx)dt‘. + (Cz'c))G(T'l’) =B (A=2)
where

1
- —— b_ "
B b (cl a)

i i dc* (T) . . a
Proof: The solution of the equation % petm 0 can be expressed

in terms of r(Tly) and is given by equation (A-2).

Notice that the repair rate r(Tlx) 18 monotonely decreasing
with T. It can be easily shown that the ILHS of the above equation,
q(T) is also monotonically decreasing with T under the conditions

¢ <€, and A 20 . Therefore, if q(0) >B>q(®) - 0 then there
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exists a unique and finite solution satisfying the above equation.
This solution yields the minimum cost because the cost function

is convex under these conditions. Also, from the monotonicity of
q(T) ., ™=0 if B>q(0) and T*=« if B<qg(®») (see Figure A-1).
If there exists an optimal T* then by substituting T* into C*(T)
we get

- *
v Cl C2 Dz r('r 'x)

it B s o ugBURRIG) W3

This completes the proof.

Note that Theorems 2.1 and 2.3 are the special cases of this

general theorem.
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q(T)
,——q(0)z r{Oly)

Bl

o +1~ T

(a) q(0)>B>g(=)=0

q(T) q(T)

(2]

/ T*=o T¥=00
q(0)

o)

T T
S DU U ———

(b) q(0)<B

(c) q(=)>B

FIGURE A-1l Plots of q(T) vs T for Various Cases




APPENDIX B

Theorem B~1l. If the conditions of Theorem A-1 hold, then there

exists a finite upper bound T (>T*) such that

r(Fly) = 3 2 (B=1)

A+ (Cy-C) 3

n+l

Proof of Theorem B-1l. We again use the general form to show that

there exists a unique and finite upper limit T of T* in case of
the existence of T*, i.e. under the conditions Cp<Cy A 20
and gq(0) >B>q(«) . Since the repair rate t('x‘lx) is monotonically

decreasing with T, we have

r(le) > r('rlz) for T>0

or

r(0ty) *G(Tly) > g(Tly) .
Integrating both sides over the range of T we get

?mlr(le) > 1 (B=2)

where
¥nel ® j‘o G(Tly)dt

is the posterior mean. Now define the following function.

M(T) = r(TIy)(A+ (cy=c))¥ 1) =q(T) . (B=3)

Then, from B-2 we note that M(T) is monotonically decreasing in T

with
M(=) = 0 (B=4)
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M(0) = (°2'°1’9n+1 r(0|x\) = (c,mc,)

= (cz-cl){irmlr(oux)-lho (B~5)
Therefore,
M(T) >0 for T>O0
or
r(TIy) (A+ (cg=c))¥ 1) >q(T) (B~6)
Hence, if there exists a T* such that
q(T*) =B (B=7)
then there also exists a unique and finite root T satisfying
r(TIy) (A+ (cy=c))¥ 1) =B
or
e (B-8)

r(Tly) = y
Lo T (ey=e))¥ 01

It is easily seen that T >T* (see Figure R-1).
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FIGURE B-1 Plot of q(T) vs T
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APPENDIX C 9

Relationship between C('r;) and T; |

If <:-1<c2 . then C(T;)J with r('r;) . This is seen to be true

from equation (2.25). Now, from Figure C-1, we see that

Cn('l‘*) > cm_l('r*) o> 'r; > '1‘;+1

because r(T)i with T. Hence the decision will be to take another

observation.

From Figure C-2, we see that

* * - *
c 'r)>cn('r)<>'r;<'r

ml( n+l

and hence the decision will be to stop taking observations and to

employ the optimal policy T .
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c(T)
¢y (T9)
11T
. 1 r(T)
r(Ty) r(They
FIGURE C-1 Plot of C(T) versus r(T)
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FIGURE C=2 Plot of C(T) vs x(T)
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